Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
The discovery of two-dimensional superconductivity in (111) and (110) interfaces has raised significant interest in this system. In this paper, we report the first successful fabrication of a direct current superconducting quantum interference device (dc-SQUID) in the KTO system. The key device elements, superconducting weak links, are created by conductive atomic force microscope lithography, which can reversibly control the conductivity at the LAO/KTO (110) interface with nanoscale resolution. The periodic modulation of the SQUID critical current with magnetic field corresponds well with our theoretical modeling, which reveals a large kinetic inductance of the superconducting two-dimensional electron gas in KTO. The kinetic inductance of the SQUID is tunable by electrical gating from the back, due to the large dielectric constant of KTO. The demonstration of weak links and SQUIDs in KTO broadens the scope for exploring the underlying physics of KTO superconductivity, including the role of spin-orbit coupling, pairing symmetry, and inhomogeneity. It also promotes KTO as a versatile platform for a growing family of quantum devices, which could be applicable in the realm of quantum computing and information.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract Interface engineering at complex oxide heterostructures enables a wide range of electronic functionalities critical for next‐generation devices. Here it is demonstrated that ultra‐low‐voltage electron beam lithography (ULV‐EBL) creates high‐quality mesoscale structures at LaAlO3/SrTiO3(LAO/STO) interfaces with greater efficiency than conventional methods. Nanowires, tunnel barriers, and electron waveguides are successfully patterned that exhibit distinctive transport characteristics including 1D superconductivity, nonlinear current–voltage behavior, and ballistic electron flow. While conductive atomic force microscopy (c‐AFM) previously enabled similar interface modifications, ULV‐EBL provides significantly faster patterning speeds (10 mm s−1vs 1 µm s−1), wafer‐scale capability (>(10 cm)2vs <(90 µm)2), and maintenance of pattern quality under vacuum conditions. Additionally, an efficient oxygen plasma treatment method is developed for pattern erasure and surface cleaning, which reveals novel surface reaction dynamics at oxide interfaces. These capabilities establish ULV‐EBL as a versatile approach for scalable interface engineering in complex oxide heterostructures, with potential applications in reconfigurable electronics, sensors, and oxide‐based devices.more » « less
-
null (Ed.)In recent years, lanthanum aluminate/strontium titanate (LAO/STO) heterointerfaces have been used to create a growing family of nanoelectronic devices based on nanoscale control of LAO/STO metal-to-insulator transition. The properties of these devices are wide-ranging, but they are restricted by nature of the underlying thick STO substrate. Here, single-crystal freestanding membranes based on LAO/STO heterostructures were fabricated, which can be directly integrated with other materials via van der Waals stacking. The key properties of LAO/STO are preserved when LAO/STO membranes are formed. Conductive atomic force microscope lithography is shown to successfully create reversible patterns of nanoscale conducting regions, which survive to millikelvin temperatures. The ability to form reconfigurable conducting nanostructures on LAO/STO membranes opens opportunities to integrate a variety of nanoelectronics with silicon-based architectures and flexible, magnetic, or superconducting materials.more » « less
An official website of the United States government
